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Introduction

New York City, the most populated city in the United States, has a bustling transportation system

including one of the largest subway networks in the U.S., as well as an arsenal of taxi cabs and ride share

vehicles. With such a wide variety of public transit options, potential passengers can easily minimize the

amount of time they need to wait for a ride by choosing the best option for their location. If a group of

people are not near a train station, they have the option of hailing a cab. If no cab is near, they can use a

ride-share service to call for a ride.

For a taxi company to remain competitive within this diverse transit system, they need to operate as

efficiently as possible. In an ideal case, this amounts to having a vehicle waiting nearby for every person

or group needing a ride. It would seem natural, then, for a New York taxi company to dispatch vehicles

to densely populated areas such as Midtown Manhattan in order to ensure that most if not all potential

passengers get in a taxi. However, this approach neglects two main elements that are crucial to improving

the efficiency of a taxi company.

First, if all available cars were sent to a single area, there would be an excess in the supply of cabs which

would result in numerous cabs being without a fare. Cabs without a fare, or ”idle” cabs, are not earning

any money for the company because there are no passengers. These idle cabs would be better located in less

populated areas that may not have many cabs readily available to make pickups.

The second issue with the high population allocation strategy is that dispatching cabs to areas in which

the demand for taxi fares is high only considers one half of the taxi fare: the pickup. In order to maximize

the efficiency of a taxi company as a whole, the other half of a fare, the drop-off, is equally as important. As

soon as a cab delivers its passengers to their intended location, it becomes an idle cab that is now available

to pick up a new passenger. If there is a potential passenger in the same location as the cab’s drop-off, then

the cab has little to no idle time and can maximize it’s fare earnings. For the taxi company as a whole,

optimal operational efficiency is achieved if every cab drop-off occurs in a location in which a passenger

is immediately ready to be picked up. Areas in which there are fewer drop-offs occurring than requested

pickups would then require additional cabs to meet the unmet demand. Therefore it makes sense to base the

taxi company’s dispatch strategy on the difference between the demand for cabs and the supply available

from delivering fares.

The aim of the present research is twofold. First, we seek to predict areas of New York City in which

there is a mismatch between the supply and demand of taxi cabs. Then, using these predictions, we will

design an algorithm that creates an optimal dispatch strategy. This strategy would send idle cabs from ar-

eas in which supply exceeds demand to meet awaiting passengers from areas in which demand exceeds supply.

Data

The New York City Taxi and Limousine Commission (TLC) has released the data of all taxi fares for the

Yellow Cab and Green Cab taxi services dating back to January 2009. These data exceed 1.5 billion fares
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in total. For the purpose of this analysis, we will only use data from Yellow Cabs, since they are the most

complete. Records for Green Cab fares only began in August 2013, whereas Yellow Cab fares are recorded

back to January 2009. The Yellow Cab data alone amounts to over 900 million trips.

The complete data set contains information regarding the location at which the passenger was picked up

and dropped off, the time and date of the pickup and drop-off, as well as several indicators of group size,

type of fare, cost, and type of payment. Prior to, and including June 2016, all locations were recorded in

latitude and longitude pairs. Beginning in July 2016, locations were recorded as the taxi zone ID in which

the pickup or drop-off for the fare occurred. For the sake of precision, this analysis will only focus on the

data up to June 2016 in order to use latitude and longitude as indicators of location. After restricting the

data to this subset, we still have over 750 million taxi trips.

To better understand how taxi usage varies across time, the data were grouped by half-hour time periods,

indexed by season of the year, day of the week, and time of day. When grouping by season, the months from

December to February were classified as Winter, March to May as Spring, June to August as Summer, and

September to November as Fall. Figure 1 provides a heat map of the pickups and drop-offs that occurred

on Monday, June 20th, 2016 between 10:00 and 10:30am. Both maps appear to have similar point densities,

although there appear to be more drop-offs than pickups in Midtown just south of Central Park. However,

from these maps it is difficult to get an objective sense of how the densities of pickups and drop-offs compare

spatially.

Figure 1: Observed Pickups and Drop-offs for June 20th, 2016 at 10am

The aim of this research is to predict locations in which a mismatch between demand and supply of taxi

cabs occurs. To do this, we will use the number of pickups that occurred in a given location as a measure of

demand and the number of drop-offs as a measure of supply. The difference between pickups and drop-offs,
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then, is a measure of the mismatch we aim to predict.

In order to construct this ”net-pickups” density, our data were first grouped into half-hour blocks of time,

indexed as described above. This gives us a small window in which to aggregate the number of pickups and

drop-offs. Then, we applied a grid system to the data in order to create small regions in which to compare the

number of pickups and drop-offs that occurred. The grid was created using a process known as geohashing.

Figure 2: Observed Net-Pickups for June 20th, 2016 at

10am

Geohashing translates a latitude-longitude

pair into a base-32 string that represents a cell

in the geohash grid. The length of the string

determines the size of the cell and the preci-

sion of the grid translation. For this analysis,

a geohash string of length 7 was used. This

provides grid cells that are 0.0037° by 0.0037°,

or approximately 400 square feet in size. In to-

tal, this grid provides roughly 10,000 cells that

make up New York City. We then count the

number of taxi pickups and drop-offs that oc-

curred within a given cell during a given time

period. The net-pickups statistic is computed

by taking the number of pickups minus the

number of dropoffs. For a given cell in the

grid, the net-pickups value was computed for

every half-hour window during each week from

January 2009 to June 2016. This gives us 391

weeks per cell, per half-hour window.

Figure 2 shows the geohash map for Manhattan on Monday June 20th, 2016 between 10:00 and 10:30am.

Here the red squares are cells in which more drop-offs occurred than pickups, indicating an excess in sup-

ply. The blue squares are cells in which there were more pickups than drop-offs indicating an excess in

demand. Here we can see a cluster of dark red near Central Park in Midtown showing a region in which

there is a large excess in supply during this time period. As we move away from Midtown there is a mix of

blue and red squares which suggests that neighboring cells may have different signs for the net-pickup values.

Predictive Modeling

To avoid any difference in structure between the number of pickups and drop-offs between two different

days of the week, or even different times of the day, models were fit for each half-hour segment in every day

of the week separately. The results in 336 time periods on which to fit statistical models.

From the net-pickups map in Figure 2, we see that the data have a general spatial trend, where similar
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net-pickup values tend to be grouped nearby to one another. Additionally, there appears to be a substantial

degree of variability in the net-pickups values of neighboring cells, indicating the presence of variation from

the overall spatial trend. As such, there are two main components to our data that are essential to capture

in the model: spatial correlation and temporal variability.

Spatial Smoothing:

In order to account for the overall spatial trend present in the data, we first computed the average net-

pickups value for a given cell during a given time block. Let Yi,s,d,t,w be the observed net-pickups for cell i

during season s, day of the week d, and half-hour t, from week w in the data set. The cell mean for a single

half-hour block is then given as

µi,s,d,t =
1

n

n∑
w=1

Yi,s,d,t,w

where n is the total number of occurrences for the given season, day, and half-hour combination in the

data-set.

The last complete week in the data, June 20th to June 27th, 2016, was set aside to be used as a comparison

for our model predictions. As such, cell means were computed using all weeks up to this testing week, giving

us 390 weeks on which to calculate these cell means.

Using these cell means during a given time block, a spatial smoother was applied to generate a spatial

average for each cell. Because the spatial correlation appears to be relatively localized, a K-Nearest Neighbors

smoother was applied in order to only consider the closest cells to the target cell. Let Nk(i) indicate the

neighborhood of size k for cell i. The KNN spatial average for cell i is then given by

µ̂i,s,d,t =
1

k

∑
j∈Nk(i)

µi,s,d,t

where k is determined by 10-fold cross validation to minimize the mean squared error between the KNN

spatial average and the original cell means.

Figure 3 shows the maps of cell means and spatially smoothed averages for Summer Mondays between

10:00 and 10:30am, which corresponds to the half-hour block depicted in Figure 2. Here we see that the cell

means don’t appear to differ too much from the observed net-pickups given in Figure 2, although there does

appear to be a slightly stronger spatial correlation present. In the map of spatially smoothed means, then,

we can clearly see the regions of spatial correlation, from the dark-red area south of Central Park indicating

excess supply, to the two strips of light blue on either side of the Park representing regions of excess demand.

Temporal Forecasting:

It is apparent from these maps that although we can capture the general spatial trend present in the

data, we lose the variability between neighboring cells found in Figure 2. In order to account for this, we

first create a deviation statistic that compares the observed net-pickups from their spatial average. This
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Figure 3: Cell Means and Spatial Averages for Summer Mondays from 10:00 to 10:30am

deviation value is given by

δi,s,d,t,w = Yi,s,d,t,w − µ̂i,s,d,t

These deviation statistics are then aligned sequentially by subsequent half-hour blocks to create a time

series. Here we will denote the T th entry in the time series for cell i as δi,T to avoid indexing issues in which

sequential observations fall on different days of the week or seasons of the year. Then, an ARMA model was

fit to each cell. EDA of 10 randomly selected cells found that while some cells would be best fit by a lower

order model, other cells were better modelled by higher order AR and MA components. To avoid fitting

a unique model to each cell, an ARMA(2,2) model was chosen as a middle ground that could fit all cells

reasonably well. EDA for selected cells as well as analysis of the ARMA(2,2) fit are given in Appendix A.

The ARMA(2,2) model is given by

δi,T = φi,1δi,T−1 + φi,2δi,T−2 + θi,1εi,T−1 + θi,2εi,T−2 + εi,T

where εi,l ∼ N(0, σ2
i ) The parameters φi,1, φi,2, θi,1, θi,2, and σi were estimated using maximum likelihood,

and a one-step forecast was generated to predict the future deviation statistic. This forecast is computed as

δ̂T+1 = φ̂1δT + φ̂2δT−1

Then, to retrieve the predicted net-pickups for a given cell at a given time, we add the spatial mean to the

predicted deviation:

Ŷi,s,d,t,w = δ̂i,s,d,t,w + µ̂i,s,d,t

Figure 4 provides the observed and predicted net-pickups maps for June 20th, 2016 between 10:00 and

10:30am. Here we find that the predictions are almost indistinguishable from the observed values, indicating
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Figure 4: Observed and Predicted Net-Pickups for Monday June 20th, 2016 from 10:00 to 10:30am

a high degree of predictive accuracy. In fact, these predictions have an R2 of .907 and a root mean squared

error of 1.275.

Model Results:

The last complete week in the data, the week of June 20th to June 27th, 2016, was set aside from the rest

of the data-set to be used as a test set on which to compare our model predictions. Since all of these days

fall in the summer season, we have 336 half-hour blocks of time on which to construct our model. Using the

process detailed above, predictions were generated for every cell in each of these 336 blocks of time. R2 and

root mean squared error (RMSE) statistics were computed for each half-hour set of predictions in order to

determine the model accuracy. These measures are given by:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 R2 =

(
n∑

i=1

(Yi − Ȳ )(Ŷi − ¯̂
Y ))2

n∑
i=1

(Yi − Ȳ )2
n∑

i=1

(Ŷi − ¯̂
Y )2

Table 1 provides summary statistics for the accuracy of our model. On average, the model returns an R2

of .771 , which indicates that the model captures over 75% of the variability present in our data. Additionally,

we find the average RMSE to be 2.584, which suggests that on average, our predictions deviate from the

observed values by approximately 2.5 net-pickups.

In addition to model accuracy, the overall fit of the model was evaluated through the model residuals.

For a given half-hour window, each cell returned a residual computed as the difference between the predicted

and observed value. Figure 5 provides a spatial map of the residuals from June 20th, 2016 between 10:00

and 10:30am in order to check for any spatial correlation that went unaccounted in the modeling process.
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Table 1: Model Performance Summary

Minimum Mean Maximum

R2 .536 .771 .952
RMSE 0.946 2.584 4.570

Here we find that there does not appear to be any substantial spatial correlation present, although we do see

that larger residuals, represented by darker colored cells, seem to be more frequent in areas that had more

extreme net-pickup values. This would suggest that most of the spatial pattern in the data is accounted for

by the spatial smoothing portion of our model.

Figure 5: Residual Plots for Monday June 20th, 2016 from 10:00 to 10:30am

In addition to spatial residuals, we also need to check the general distribution of our residuals, given

by the quantile-quantile plot in Figure 5. Here we find that the distribution has heavy tails relative to the

normal distribution. One possible reason for this is that the error terms in our ARMA model are assumed to

be Gaussian white noise, whereas these residuals may indicate that t-distributed errors may be more appro-

priate. However, both the spatial residuals as well as the residuals from the time series (Appendix A) suggest

that our model is a good fit for the data, and the non-normality will not affect the model interpretation.

Dispatch Algorithm

Once predictions are generated, the algorithm to optimally dispatch idle cabs needs to match areas of

excess supply, indicated by negative net-pickups, to areas of excess demand, indicated by positive net-pickups.

For simplicity, the dispatch algorithm will be described for a given half-hour window of time. In this case,
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let Ŷi be the predicted net-pickups for cell i in this time window.

Let D = {i; Ŷi > 0} be the set of all cells that have a positive net-pickups prediction and S = {j; Ŷj < 0}

indicate all cells with a negative net-pickups prediction. D is then the demand region and S is the supply

region. For a cell j in the supply region, Sj indicates the number of cabs available for dispatch. Similarly, Di

indicates the number of passengers available for pickups in demand region cell i. These values are computed

as

Sj = I(j ∈ S)(−Ŷj) Di = I(i ∈ D)Ŷi

Now let dij be the distance between cell i and cell j, and let xij be the number of taxis dispatched from cell

j to cell i. To minimize computation in this step, we only need to compute the pairwise distances between

one cell in the demand region and one cell in the supply region, instead of computing all possible pairwise

distances of all cells in the grid. In order to minimize the total distance travelled by all dispatched cabs, the

algorithm minimizes the objective function

C(x) =
∑
i∈D

∑
j∈S

dij · xij

However, we impose constraints on this optimization depending on the total excess of demand or supply

across all cells. If the total excess in demand is greater than the total excess in supply for a given half-hour

window, then we impose the constraints∑
i∈D

xij = Sj for all j ∈ S
∑
j∈S

xij ≤ Di for all i ∈ D

to ensure that all idle cabs are dispatched to a new passenger.

Conversely, if the total excess in demand is less than the toal excess in supply for a given half-hour

window, we impose the constraints∑
i∈D

xij ≤ Sj for all j ∈ S
∑
j∈S

xij = Di for all i ∈ D

in order to guarantee that all awaiting passengers are given a ride.

These constraints verify that we are making the maximum possible connections between the idle cabs

needing a passenger and the passengers needing a ride. Once we have determined the set of xij that minimize

the total distance traveled by all available cabs, we can construct the dispatch matrix M , where Mij = xij .

The entries of this matrix are exactly the optimal number of cabs sent from supply cell j to demand cell i.

Moreover, the jth column of M represents the path of dispatch for every available cab in supply cell j, and

the ith row of M represents the starting location of every cab being sent to demand cell i.

Principal Component Analysis

Once we have constructed our dispatch matrix M , we can then use principal component analysis to get

an idea of the general flow of dispatch. Suppose there are m supply cells and n demand cells. We perform
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a singular value decomposition on this matrix to get

Mmxn = UmxmΣmxnV
T
nxn

where Σmxn = diag(σi). We can then approximate our dispatch matrix M by only considering the first k

singular values of Σ, which are given by {σ1 . . . σk}. This approximation becomes

M̂mxn = UmxkΣkxkV
T
kxn

To determine the value of k to use for our approximation, we consider the relative size of each eigenvalue in

Σ, given by

αp =
σ2
p

n∑
i=1

σ2
i

By ordering the αp, decreasing in size, and computing their cumulative sum, we get an measure of the

additional information provided by each subsequent eigenvalue, which represents the importance of the

dispatch flow for a given cell. Typically k is determined by the point at which additional αp provide

diminishing returns to the cumulative sum. The k chosen principal components, then, represent the k cells

that control most of the flow of dispatch in our algorithm.

Using the predictions generated for Monday, June 20th, 2016 from 10:00 to 10:30am, we find that the first

80 principal components account for approximately 80% of the dispatch flow provided by our algorithm. The

map of our estimated dispatch M̂ is given in Figure 6. Here we find that most of the idle taxis come from Mid-

town and need to be allocated to Upper East Side and Upper West Side. There are also some cells towards the

south of New York City in Tribeca and the Financial District that are prominent in our dispatch model as well.

Figure 6: Estimated Dispatch for June 20th,

2016 at 10am

Discussion

This research provides a method by which taxi companies

can predict the mismatch between the supply of taxi cabs and

the demand for rides, and then better allocate these idle taxis

to pick up a new fare. Doing so not only improves the effi-

ciency of a taxi company as a whole, but also reduces the time

passengers need to spend waiting to get a ride. This algorithm

of optimizing efficiency lends itself to real-time updates in two

main ways.

First, the predictions are generated for every half-hour,

which is fairly granular. Since the New York City traffic and

taxi usage fluctuates even between half-hours, the model can

be applied regularly to give frequent updates to the dispatch
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strategy being used by the cab company. Predictions are generated every half-hour and a new dispatch

strategy is produced. As new data is introduced to the model, the dispatch strategy changes to accommodate

the new patterns in taxi usage. As cabs are dispatched to various areas of New York City, inevitably there

will be new areas created in which a demand-supply mismatch occurs. The algorithm can then reconfigure

the dispatch strategy to account for these new regions of mismatch.

The second major benefit of this model is that the predictive step only relies on the previous hour of

taxi usage in order to predict the future half-hour. As such, predictions require fairly little computation to

generate, and the model can be updated in real time. If any unusual changes in taxi patterns occur, the

model will be sensitive to them and update accordingly. Moreover, these sudden changes will not create

lasting impacts to future predictions, assuming that traffic patterns return toward their norm.

Future research may seek to improve upon this algorithm in a variety of ways. No covariates were included

in this analysis. Instead, it is implicitly assumed that past observations are sufficient to predict the future.

Predictions may become more accurate by including the addition of variables such as weather or holidays into

the model. Further, the spatial computation step assumed that every cell had a true net-pickups value that

was independent of any temporal trend. Future improvement to this model may consider the cell average as

a linear trend when computing spatial correlation between cells.

10



Appendix A: ARMA(2,2) Model Fit for Select Cells

Figure A1: Deviation Series EDA and ARMA(2,2) Model Fit

Appendix B: Data Sources

The raw taxi data used in this research can be found at

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

The compressed data and the code used for analysis can be found at at my github

https://github.com/mullana2/NYTaxi
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